Planning for Metal Roofing Retrofits

Posted on September 5, 2017 by kbuchinger

The decision to retrofit an existing commercial roof with a new metal one is usually based on the very real appeal of creating a long-term (50-60 years) roofing solution, achieving better energy efficiency, creating better aesthetics, or all of the above. Prior blog posts discussed these benefits in more detail and talked about different types of metal roofing retrofits. Here, we will focus on where to start in terms of planning to undertake a roofing retrofit based on covering a membrane roof with a metal-framed, low-slope, metal roofing system.

Existing Building Assessment

A successful retrofit is based on the new metal roof system working with the existing building structure and local conditions. Each of the following should be looked at first when starting the planning and design process:

  • Existing Roof Geometry: The shape (length and width) of an existing roof is important to determine the square footage of the roof, but so are the actual dimensions, since those can impact the height of the new metal roofing. The minimum recommended slope for new roofs is between ¼:12 and 3:12 , depending upon the roof system chosen for the new roof. Existing roof details such as overhangs, parapets, and the existing roof slope itself all need to be documented in order to determine how best to address them with the retrofit system.
  • Existing Roof Type: In many cases, the existing roofing does not need to be removed, but there may be ballast such as stone or other materials that are no longer needed. Oftentimes, the removal of this ballast will compensate for the additional weight of the new roof and framing system. The materials of the existing roof may also pose compatibility issues with new materials, so they should be documented to plan accordingly.
  • Existing Roof Substrate: Under the existing roofing, some type of substrate material is holding it up. It may be rigid insulation resting on a metal, wood, or concrete deck, or it may be an uninsulated substrate that has insulation below it. The specifics here need to be established, since the new metal framing will need to connect through this material. If insulation is in fact part of the substrate, then its effectiveness should be determined—has it gotten wet and been compromised, or is it still in good usable condition? Either way, how much is there?
  • Existing Roof Structure: The structural system of the building includes framing or other components that support the roof. This is what the new metal framing will anchor to and transfer structural loads to. Hence, the specifics in terms of type (steel joists, concrete beams, wood joists, etc.), the size, and the spacing are critical. Further, the carrying capacity of this system should be assessed and analyzed by a structural engineer, since the retrofit system will add 2 to 4 pounds per square foot of dead load to the roof structure. Further, this weight, plus any live loads from the roof, will typically not be distributed uniformly, but in a series of point loads. Therefore, the engineered capacity of the existing structure needs to be known to determine if any structural enhancements are needed.
  • Existing Roof Equipment: Many commercial buildings use the roof to locate mechanical, electrical, or elevator equipment. In some cases, that equipment can be moved to the ground or elsewhere, but in other cases it can’t, or would be too costly to consider. Hence the details, location, and height of such equipment needs to be known so a determination can be made on whether it can be covered and enclosed in the “attic” of the retrofit system, or if it will need to be raised to the top of the new roof.

New Retrofit Roofing Goals

With an assessment of the existing conditions in hand, the focus now becomes identifying the primary objectives of the new roof. These should be clearly articulated so the final design can address and include each of them:

  • Appearance: What is being sought in terms of shape, height, visibility, color, improved curb appeal, or other visual considerations?
  • Performance: What is the new roof being asked to address related to operations or performance issues? Common elements could be improved drainage, less maintenance, greater longevity, or more resistance to damage.
  • Energy Efficiency: Replacing a roof is the ideal time to improve energy efficiency in a building by adding new or more insulation. This could be done simply to meet current energy code requirements or to contribute to an overall energy-use reduction project at the building. In some cases, the new roofing system could enhance the ability to include energy generation, such as solar panels mounted to the new roofing system.

With proper planning and goal setting, a metal retrofit system can meet or exceed all expectations. This was the case recently at a water treatment facility in Dallas, Texas. Here is a photo of the existing built-up roof that was experiencing problems and needed replacement. It was assessed, analyzed and determined to be an excellent candidate for a retrofit metal roofing system.

Retrofits

 

Metal Roofing Retrofits
Here is a photo of the light-gauge metal framing installed to create the new low-slope planes and transfer loading to the existing building structure.

 

Planning for Retrofits
And, finally, here is the completed metal roofing, which looks better and is expected to perform better than the original roofing.

 

To learn more about MBCI retrofit metal roofing systems and how they might work on a building you are involved with, visit http://www.mbci.com/products/retrofit-products/.

Leave a Reply

Your email address will not be published. Required fields are marked *